Pulmonary oxygen uptake and muscle deoxygenation kinetics during heavy intensity cycling exercise in patients with emphysema and idiopathic pulmonary fibrosis
نویسندگان
چکیده
BACKGROUND Little is known about the mechanistic basis for the exercise intolerance characteristic of patients with respiratory disease; a lack of clearly defined, distinct patient groups limits interpretation of many studies. The purpose of this pilot study was to investigate the pulmonary oxygen uptake ([Formula: see text] O2) response, and its potential determinants, in patients with emphysema and idiopathic pulmonary fibrosis (IPF). METHODS Following a ramp incremental test for the determination of peak [Formula: see text] O2 and the gas exchange threshold, six emphysema (66 ± 7 years; FEV1, 36 ± 16%), five IPF (65 ± 12 years; FEV1, 82 ± 11%) and ten healthy control participants (63 ± 6 years) completed three repeat, heavy-intensity exercise transitions on a cycle ergometer. Throughout each transition, pulmonary gas exchange, heart rate and muscle deoxygenation ([HHb], patients only) were assessed continuously and subsequently modelled using a mono-exponential with ([Formula: see text] O2, [HHb]) or without (HR) a time delay. RESULTS The [Formula: see text] O2 phase II time-constant (τ) did not differ between IPF and emphysema, with both groups significantly slower than healthy controls (Emphysema, 65 ± 11; IPF, 69 ± 7; Control, 31 ± 7 s; P < 0.05). The HR τ was slower in emphysema relative to IPF, with both groups significantly slower than controls (Emphysema, 87 ± 19; IPF, 119 ± 20; Control, 58 ± 11 s; P < 0.05). In contrast, neither the [HHb] τ nor [HHb]:O2 ratio differed between patient groups. CONCLUSIONS The slower [Formula: see text] O2 kinetics in emphysema and IPF may reflect poorer matching of O2 delivery-to-utilisation. Our findings extend our understanding of the exercise dysfunction in patients with respiratory disease and may help to inform the development of appropriately targeted rehabilitation strategies.
منابع مشابه
Impaired Pulmonary V˙O2 Kinetics in Cystic Fibrosis Depend on Exercise Intensity.
PURPOSE This study aimed to investigate the effects of mild-to-moderate cystic fibrosis (CF) on the pulmonary oxygen uptake (V˙O2) kinetics of seven pediatric patients (13.5 ± 2.8 yr) versus seven healthy matched controls (CON; 13.6 ± 2.4 yr). We hypothesized that CF would slow the V˙O2 kinetic response at the onset of moderate (MOD) and very heavy (VH) intensity cycling. METHODS Changes in b...
متن کاملThe effects of short work vs. longer work periods within intermittent exercise on V̇o2p kinetics, muscle deoxygenation, and energy system contribution.
We examined the effects of inserting 3-s recovery periods during high-intensity cycling exercise at 25-s and 10-s intervals on pulmonary oxygen uptake (V̇o2p), muscle deoxygenation [deoxyhemoglobin (HHb)], their associated kinetics (τ), and energy system contributions. Eleven men (24 ± 3 yr) completed two trials of three cycling protocols: an 8-min continuous protocol (CONT) and two 8-min interm...
متن کاملAdaptation of pulmonary O2 uptake kinetics and muscle deoxygenation at the onset of heavy-intensity exercise in young and older adults.
The purpose was to examine the adaptation of pulmonary O(2) uptake (Vo(2p)) and deoxygenation of the vastus lateralis muscle at the onset of heavy-intensity, constant-load cycling exercise in young (Y; 24 +/- 4 yr; mean +/- SD; n = 5) and older (O; 68 +/- 3 yr; n = 6) adults. Subjects performed repeated transitions on 4 separate days from 20 W to a work rate corresponding to heavy-intensity exe...
متن کاملPulmonary Rehabilitation in Idiopathic Pulmonary Fibrosis: A Chance for a Multidisciplinary Treatment Approach
Background and Objectives: Idiopathic pulmonary fibrosis (IPF) is characterized by progressively worsening lung function, ventilation capacity, dyspnea, and finally reduced exercise intolerance. All of these have a significant negative impact on functional capacity and quality of life. In this study, we aim to evaluate the effects of pulmonary rehabilitation (PR) in IPF and assess the predictor...
متن کاملKinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: relationship to central cardiovascular dynamics.
Patients with chronic obstructive pulmonary disease (COPD) have slowed pulmonary O(2) uptake (Vo(2)(p)) kinetics during exercise, which may stem from inadequate muscle O(2) delivery. However, it is currently unknown how COPD impacts the dynamic relationship between systemic and microvascular O(2) delivery to uptake during exercise. We tested the hypothesis that, along with slowed Vo(2)(p) kinet...
متن کامل